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Abstract

The Navier-Stokesequations are solved numerically

for two-dimensional steady viscous laminar flows.

The grids are generated based on the method of De-

launay triangulation.

A fmite-volurneapproach is used to discretizethe

conservationlaw form ofthe compressibleflowequa-

tionswrittenin terms ofprimitivevariables.A pre-

conditioningmatrix is added to the equations so

that low Mach number flowscan be solvedeconom-

ically. The equations are time marched using ei-

ther an implicit Gauss-Seidel iterative procedure or a
solver based on a conjugate gradient like method. A
four color scheme is employed to vectorize the block

Ganss-Seidel relaxation procedure. This increases the

memory requirements minimally and decreases the

computer time spent solving the resulting system of

equations substantially. A factor of 7.6 speedup in
the matrix solver is typical for the viscous equations.

Numerical results are obtained for inviscid flow

over a bump in a channel at subsonic and transonic
conditions for validation with structured solvers. Vis-

cous results are computed for developing flow in a

channd, a symmetric sudden expansion, periodic tan-
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dem cylindersin a cross-flow,and a four-portvalve.

Comparisons aremade with availableresultsobtained

by other investigators.

1 Introduction

The development of a general computer code that

can predict the flow about complex geometries which

include complex flow structures is desirable in com-

putational fluid dynamics. Many numerical schemes

proposed to date which use the finite difference or

finite volume formulation of the flow equations were

written to take advantage of some inherent grid struc-

ture which then permits flow solutions to be obtained

efficiently [1] - [3]. A structured mesh can be defined
as a domain that is discretized such that the neigh-
borhood of a cell or node can be related to its own in-

dex number. This structme, which makes the solver

so efficient, often makes it difficult to obtain reason-

able grids about complex flow geometries. Many of

these solutionalgorithms can be found discussed in

review papers [4],[5].

An unstructured grid flow solver can alleviate

many of the problems associatedwith structured

grids. However, unlikethe structuredgrid,the cell

neighborhood of an unstructured grid must be de-

finedexplicitly.The triangleisthe simplestand most

convenientgeometricfigurethat can be used to cover

a two-dimensional domain. An advantage of using a

simple triangularshaped cellisthe abilitytogenerate



grids about arbitrary geometries. Another advantage

is the ability to add cells in high gradient regions of E =
the flow field as well as those regions of the flow that
are of interest without concern for the surrounding

cells. The main disadvantages of using an unstruc-
tured mesh lies in the added complexity and memory and

requirements of the flow solver.

Several researchers have recently reported success-

ful results in solving the Euler and Navier-Stokes

equations on unstructured grids [6]- [11]. The re-

search reported here considered the use of unstruc-

tured grids in predicting low Mach number flows

through internal geometries. To date, there has not
been much work done toward applying unstructured

grids to viscous internal flows at low Mach numbers.
In the research to be described here, the Euler and

Navier-Stokes equations were discretized on unstruc-

tured grids composed of triangles in finite volume

form using primitive variables; however, the conser- and
vation law form was retained. Preconditioning of the

time derivative term was used to allow efficient cal-

culations at vanishingly small Mach numbers. The
equations were solved iteratively using either the im-

plicit Gauss-Seidel method or an iterative conjugate

gradient based solver. Several iterative conjugate
gradient based solvers and matrix preconditioners
were considered.

Details of the discretization, the preconditioning,

the grid generation strategy, and the methods for

solving the algebraic equations are given in sections with
that follow. Results are given for several test cases
including the inviscid flow over a bump in a channel

at subsonic and transonic conditions, viscous devel-

oping flow in a channel at several Reynolds numbers,

a symmetric rearward-facing step flow, flow over a

cascade of cylinders arranged in tandem, and flow

through a four-port valve.

2 Governing Equations

The Navier-Stokes equations were used to model vis-

cous fluid flow problems in this study. In conserva-

tion law form and physical coordinates these equa-
tions can be written in vector form as

aU OE OF
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In this work only Newtonian fluids will be considered,
so the shear stress tensors are defined as
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If a further assumption is made that the gas is ideal,

where p = P/RT with//being the gas constant per

unit mass, the Navier-Stokes equations can be written
in nondimensional form as
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where

C---_.

(5)

The Reynolds and Prandtl numbers are defined as

The quantity M is the reference Math number, de-

fined as utel/_, which appears when the
equations are cast in nondimeusional form. Here and
in the matrices that follow F is used for convenience

to represents the quantity 7- 1. This equation can
be rewritten as

_r¢l ' _r,1 ten as

A,_-+ _Ox- 0z ' (7)

where the Jacobian matrices, At and Ax can be writ-

respectively. The refers to a term that is nondi-
mensional. The variables subscripted ref are refer-

ence quantities specific to a particular flow calcula-
tion. The test cases presented in this work involve the At =

laminar flow of air where the viscosity is assumed to

follow the Sutherland formula. It is important to note

that although these equations are written in terms of and
primitive variables(P, u, v, T), they are still in conser-

vation law form. Az =
All subsequent equations are nondimensional so the

- is dropped for convenience.

3 Preconditioning

Solving the compressible flow equations for low Mach
number cases is difficult because the resulting system

is stiff due to the large ratio of acoustic to convective

velocities. A temporal preconditioning is used in this

work to remove this stiffness.

The approach will be demonstrated by using the
Navier-Stokes equations in one dimension. The

nondimensional form of these equations is written as

aQ(w) + OG(w) OG_(w) _ O, (6)
O_ Ox Oz
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It is important to note that the quantity P/RT is
well behaved as Math number goes to zero since it

is equal to the nondimeusional density, p/pr,f. ALso

note that R = (7M2) -1.
The first column of the Jacobian matrices contains

the coefficients associated with pressure. In At, these

coefficients go to zero as the Mach number goes to
zero. This results in the acoustic time scale restric-

tion associated with pressure. As the Mach num-

ber approaches zero, a vanishingly small time step

is needed to keep the coefficients multiplying pres-
sure finite. More importantly, the system of equa-

tions become singular as the Mach number goes to

zero, as will be discussed below. For a finite time

step, the time derivative of pressure will vanish from

the equations. In the limit as the Mach number ap-

proaches zero, the equations reduce to their incom-

pressible form. Since the time derivative of pressure

does not appear in this form of the incompressible

equations, the equations contain no pressure history.
There is a more mathematical way of looking at this

problem. The system can be rewritten in the form

Ow _lA Ow OG,_(w)
-_- + A, __ = A'-_ 0_ (s)



As Math number, M, becomes small, At becomes

ill-conditioned, i.e., the determinant of At becomes
small and errors due to round off error will become

large when computing At -1. In the limit as M goes

to zero, At -1 is unbounded and the system is singu-
lar. The result is often slow convergence due to this

stiffness when using a compressible code to compute

a flow at very low Mach number. In addition, the

eigenvalues(U + C, U- C, and U)of the J acobian ma-
trix become farther apart as the Mach number goes

to zero. A remedy for this is write the equations in

the form

Ow _ Ow OG(w)Ap-_v + A, + A_ _ = - 0x (9)

The preconditioning Jacobian matrix, Ap, is defined

as

= •
'Jr M_Fu_

This Jacobian matrix used in the preconditioning is

of the same form as the matrix A_, but the depen-
dence of Mach number is removed from the terms

that are causing the ill-conditioning. This essentially

attempts to cluster the eigenvalues around the con-

vective speed. It may be possible to simplify Ap by

setting some of the nondiagonal terms in columns two

and three equal to zero.

For a time dependent calculation at low Mach num-

ber, the preconditioned equations are advanced in the

pseudo time frame as well as the real time frame.

At each physical time step, the equations are it-

erated to convergence in pseudo time, r. At this

point the pseudo time term vanishes and the time

dependent Navier-Stokes equations are satisfied. The

pseudo time iterations also remove the linearization
error from the solution at each physical time level.

If the low Mach number flow computation is steady,

it is only necessary to integrate the equations in the

pseudo time frame. This is done by setting the phys-
ical time step to a very large number to remove the

effect of the physical time derivative from the precon-

ditioned equations.

At higher Mach numbers the pseudo time term is

not needed, although convergence does not appear to
deteriorate with its continued use.

Pseudo time terms for the full two-dimensional

equations are added to the diagonal blocks of the

sparse matrix, A, in Eq. (18). These terms are

formed by a direct extension of the one-dimensional

example above.

4 Grid Generation

The triangular shaped cell is the simplest geometric

shape that can be used to cover a two-dimensional

computational domain. With an unstructured grid,
individual cells can no longer refer to their neighbors

simply by incrementing an index as in a structured

grid. Instead, the neighborhood of a cell is deter-

mined through a connectivity matrix. This connec-

tivity matrix usually contains cell based information

as well as edge based information. Details of the con-

nectivity matrix required by the computer flow code

developed in this work will be discussed later in this
section.

The use of a triangular unstructured grid formula-

tion has some distinct advantages over a structured

grid. One advantage to using triangular cells is that
with them it is easy to generate grids about complex

geometries. This reduces the amount of time required

to generate a suitable grid. Also grid adaptation can
be done locally without adding unnecessary cells to

other regions of the domain.
The method used in this work follows a path sim-

ilar to that of Holmes and Snyder [12] to triangu-

late a region. First, the boundaries that describe the

computational domain are defined. Next, the bound-
aries are discretized in a counter-clockwise direction.

These discrete points are then triangulated using the

Delaunay criterion that no other point in the corn-

putational domain lies within the circumcircle of a

given triangular cell. Points must now be added to
the domain to obtain a reasonable grid. A new point

can be added based on any criteria one chooses. The

grid point insertion in the current work is done ac-
cording to one of the following three geometric cri-

teria: improve the triangle with the smallest aspect

ratio, reduce the maximum area triangle, reduce the

size of the triangle with the largest circumcircle ra-

dins. These geometric constraints can be used in any
combination. Some other criteria that could be used

for local retriangulation are increase minimum angle,

decrease maximum angle, and maintain equal length

sides, to name a few. An example of a coarse grid

about a square hole generated in the above manner

is shown in Fig. 1.

The flow code requirements dictate the type of out-

put that the grid generation scheme must provide. A

connectivity array must be generated for an unstruc-

tured grid so that a cell neighborhood is completely
defined for the flow code. The code in the current

work was based on a cell centered scheme. Here the

triangle itself was the control volume used in the fi-
nite volume formulation.

Connectivity is determined by cell nodes, cell faces,
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Figure 1: Final coarse triangulation of domain

and face cells. Cell nodes are the nodes at the ver-

tices of a triangle. The cell faces are the edges of

a triangle. The face ceils are the cells that lie on

either side of a given edge. Typically the x, y coordi-
nates of the cell nodes are the only grid floating point

numbers required as input by a flow code. The grid

connectivity is defined through integer arrays. Two
connectivity arrays were needed in this work to define

the discretized geometry of a computational domain,

Fig. 2. The two-dimensional array NCELL contains
the edge and node connectivity for a given cell. The
first dimension of NCELL contains 6 elements. The

second dimension has a length n, where n is the to-

tal number of triangular cells in the computational

domain. Consider the cell number i. The first three

elements of the first dimension of array NCELL are

the edge numbers of cell i. The last three elements
of the first dimension of array NCELL are the ver-
tex node numbers of ceil i. This allows the access

to the edge and node numbers that define a given

cell, in this case cell number i. The array NFACE
is also two-dimensional. It contains cell connectivity

for a specific edge. The first dimension is of length
2. The second dimension is of length m, where m is

the total number of edges that make up the compu-
tational domain. The second dimension identifies the

edge(in this example, j). The first dimension of array
NFACE contains the cell numbers that are adjacent

to one another sharing the common'edge j. These two

integer arrays along with the floating point arrays x
and y define the geometry for the present scheme.

Boundary information must be defined explicitly.

Solid wall, exit, and inlet boundaries are implied

6__ NCELL(l:3,49)=37,118,16

'_> _ _:_ _ _ NCELL(4:6,49)=',53,62

_ _._) _NFACE(I:2.118)--49.513

53_

Figure 2: Connectivity requirements for a single cell

through the edge connectivity array, NFACE. For a
solid wall boundary, one of the elements of the first di-

mension of the array NFACE will contain the value

0. This tells any cell that refers to that edge that

it borders a solid wall boundary. Similarly, an exit

boundary is adjacent to a cell number of-1, and an

inlet boundary borders a cell number of -2. Periodic

and symmetric boundaries are handled through spe-

cial connectivity. This again is done by including the

appropriate cell information in array NFACE. A
symmetry boundary cell will have an edge that bor-
ders itself. So the first dimension of array NFACE

for the symmetry face will have both elements refer-

ring to the same cell number. For a periodic bound-

ary the elements will refer to cell numbers that are

separated by one periodic pitch. Boundary conditions
will be addressed later.

5 Discretization Technique

The finite volume formulation of the governing equa-

tions is well suited for application to an unstructured

discretization of the flow domain. The nondimen-

sional Navier-Stokes equation written in differential

form Eq. (4) is first recast in integral form for an

arbitrary volume, V as

OH

Using Ganss's theorem, the area integral of the flux
derivatives can be rewritten as the surface integral of

the flux quantities around the perimeter of the vol-

ume, V. This allows the Eq. (10) to be written as



For each control volume consisting of a triangular el-

ement, Eq. (11) is evaluated as

3

_(A,Q,) + _(a_ Ayj - H__ _) = 0 (12)
j=l

where Qi is the vector of conserved quantities in cell

i, Gj and Hj are the flux vector quantities across edge

j, and Azj and Ayj are the differences in Cartesian
nodal coordinates that define edge j. The summation

on j proceeds in a counterclockwise manner around

the edges of cell i. Also it is understood that Axj

stands for x(end) - x(beginning) as the evMuation
proceeds in a ' counterclockwise manner around the

sides of a control volume. The quantity Ai is the
area of cell i defined as

A_=x/s(s - a)(s- b)(_- c).
The variable s is the semiperimeter of cell i,

(13)

1 b
s--_(a+ +c) (14)

and the quantities a, b, c refer to the lengths of the
sides of the cell i. Cell face flow quantities required

by Eq. (12) for the computation of the inviscid flux

terms were approximated by using the average of the
cell centered values on both sides of a given cell face.

The numerical integration of these quantities around

the edges of the cell results in a central difference
scheme that is second order accurate in space. The

viscous terms required the computation of the deriva-
tives on the faces of the triangle control volume. To

compute these terms, the level 2 ceils shown in Fig. 3
were used and a different path integral was evaluated.

Again this yields a second order accurate scheme in
space. A total of 10 cell centered quantities was used

in the computation of the viscous quantities of the

summation term of Eq. (12). Specifically the viscous

terms in the x-momentum equation are written as

3

_(-_ Ay+ _ _ _)j
j=l

_,R 2 ('2o_, o,_) (15)= _[-_\a= _ _'
j=l

+ _+ ZXx]i,

where the summation is over the three sides of the

triangular control volume. A typical derivative can

be recast in integral form as

Figure 3: Cell level dependence

auc9"_= S---7 , udy (16)

where St is the sum the areas of the two cells across

a given edge, and the integral is along the path that
traverses the outer boundary of the two ceils in a
counterclockwise direction. These derivatives are in-

terpreted as mean values over the area S'.
The system of equations was integrated in time us-

ing an implicit scheme written in delta form. Newton
linearization was used on nonlinear terms. For exam-

ple, the terms

-- __ --+ A P---_ _T,
T T T^ T _

Pu Pfi+P Au+_AP _fi /',T,

T T T T T _

T T T T T:

(17)

are substituted into the continuity and momentum

equations. The" terms take on provisional values of

the primitive variables; and the delta quantities rep-
resent the differences between values at the new time

level and the provisional values, e.g., Au = u -- ft.

These equations can be iterated at a specific point
in time until the linearization errors are reduced to

a satisfactory level. For steady state problems, this

iteration process at each time level is not necessary.

Similar terms are used to linearise the energy equa-
tion. However, the nonlinear dissipation terms in the

energy equation were linearized by evaluating them

explicitly in terms of the provisional values, rather



thanusingNewtonlinearization.Theresultof the
abovesubstitutionsis thematrixequation

= G. (is)

The matrix A contains the linearized terms which

multiply the vector of unknown delta quantities, £.

The vector b"represents the residual of the equations

which should go to zero as the solution approaches

convergence. There are four equations written for
each cell in the computational domain. For the cen-

tral difference formulation given here, each cell is de-

pendent on the level one cells through the convective
terms as well as the level two cells through its diffu-

sive terms, as illustrated in Fig. 3. This along with

the unstructured grid yields a sparse matrix whose
elements are block 4 × 4 matrices. The general row of

the matrix A has ten non-zero blocks of coefficients.

The number of blocks vary near a boundary.

6 Artificial Dissipation

Artificial dissipation was needed in the current imple-
mentation of the flow equations to prevent the odd-

even decoupling seen in central difference computer
flow codes. Two schemes were used in this work.

The first scheme was based on the research of Jame-

son and Mavriplis [6] and was used specifically for
inviscid subsonic and transonic test cases. The sec-

ond version was developed to be used with the low
Mach number test cases where preconditioning was

employed. Both dissipation schemes were added ex-

plicitly to the system of flow equations.
The second type of dissipation was developed to

be used with the temporally preconditioned scheme.

This form of the dissipation was used for the vis-

cous subsonic flows computed in the present work.

Here a biharmonic operator was used on the primitive
flow variables. The second difference of the primitives

were computed as

api2 = E[wj]- 3wi,
j=l

where w was the vector of primitive variables. Again
the summation was done over the index j. The result

represents the second difference of the variables in
cell i. The fourth difference is then computed by

summing the third difference over the edges of the

cell,

3

aPi4 ---- E [apj2] -- 3api2.

j=l

The resulting fourth difference was then premulti-

plied by the preconditioning matrix Ap. Then it was

multiplied by the appropriate coefficient to make it
consistent with the other terms and included explic-

itly on the right-hand-side of the system of equations.

7 Boundary Conditions

For the subsonic viscous flow cases in this study, the

inlet boundary conditions were imposed by specifying

the velocity components, u and v, as well as the static

temperature, T. The static pressure was extrapolated
from the interior to the inlet. At the exit, u, v, and T

were extrapolated downstream. The static pressure,

P, was specified. At the solid wall the static tem-

perature was specified. The u and v velocity com-

ponents were set to zero to enforce the no-slip con-
dition. Static pressure was specified as symmetric

in the ghost cell to give a zero normal derivative at
the solid surface. Symmetry and periodic boundary

conditions were imposed by simply specifying the ap-

propriate cell connectivity. At a symmetry boundary

cell, values were reflected across the boundary. At a

periodic boundary cell, values were transposed by the

periodic pitch of the computational domain.
For supersonic viscous flow, boundary conditions

at a solid wall remained the same as in subsonic flow.

At the inlet, all flow quantities, P, u, v, and T were

specified. At the exit all the flow quantities were

extrapolated.
It is important to note that one of the test cases

computed to verify the code was inviscid. For this,
the viscous boundary conditions described above

were modified appropriately. Since the inflow and

outflow were subsonic, it was only necessary to mod-

ify the no-slip solid wall boundary condition to a tan-

gency boundary condition.
In the current work, temporal preconditioning was

used to compute low Mach number flows as described

in the previous section. The preconditioning did not
affect how the boundary conditions were specified,

but it is interesting to note that the eigenvalues of

the system were modified. The eigenvalues must now
be obtained from the matrix that results from the

product Ap-XA_. In one dimension

AP-1 _ (Pu'_RT)T --f"r'TuP _ e '

where P = _ - 1. One eigenvalue remains unchanged

that is A1 = U. The other two eigenvalues )_2,3 for

the given one-dimensional system take on a similar
but yet a more complex form than that described



byWithington et ai. [15]. However, in the limit as

Mach number approaches zero, the eigenvalues of the

system are

_I--U

and

U ± x/U 2 + 47T
A_,s = 2

By substituting in the appropriate nondimensional

quantities the resulting ratio of largest to smallest

eigenvalue takes on the value of (1 + v/5)/(1 - V_).

This is the same quantity that was obtained by With-

ington et al. [15] with the ratio of specific heats set

equal to one in the pre_ent work. The preconditioning

essentially allows all of the equations of the system to

be integrated at the same pseudo-time rate. This can
be compared with a scheme without preconditioning

where the ratio of largest to smallest eigenvalues is
infinity.

8 Sparse Matrix Solvers

The system of algebraic equations being solved in

the present implicit unstructured grid formulation is

represented by Eq. (18). The matrix A is sparse.
There is usually no particular pattern to the nonzero
elements when the matrix arises from an unstruc-

tured grid formulation. However, the blocks on the

main diagonal of this sparse matrix always have some

nonzero entries. Figure 4 shows a representative form

of the sparse matrix A. The solid squares repre-

sent 4 x 4 blocks with at least the diagonal elements

of the diagonal block being nonzero. The remain-

ing blocks contain zeros. In the present method, a
two-dimensional viscous flow computation requires a
maximum of ten 4 x 4 blocks in each row of the A

matrix. In contrast, an implicit structured solver can

be written such that the resulting A matrix on the

left-hand side has some special structure that allows

the matrix equation to be solved by some well es-

tablished methods. The equations can often be cast

in a form that results in a block bidingonal or block

tridiagonal matrix. This structure is not generally

available to the solution of the flow equations written

for an unstructured grid.
Several iterative methods were examined in this

work. The first was a point Gauss-Seidel scheme

where only the diagonal elements of the diagonal
blocks of matrix A were retained on the left-hand side

as unknowns. This scheme was successful for many

of the simpler problems but was prone to divergence

(A]=

m • m- • .m •
mm mu mmmm

mm mm • •

• • mmm
u • • • •
mmnm • m

Figure 4: Form of sparse matrix A

when starting with poor initial conditions. It seemed

to be very sensitive to lack of diagonal dominance.

Another iterative scheme used was the point block

Gauss-Seidel method. Here the diagonal 4 × 4 blocks
of matrix A were retained on the left hand side. The

remaining matrix equation was solved using LU de-
composition. The L and U matrices refer to the lower

and upper triangular decomposition of the diagonal
block of the matrix A. This was found to be more

robust than the previous scheme.

Even though the full sparse block matrix is N ×
N, it is only necessary to store the nonzero blocks.

This gives a maximum block matrix of 10 x N for a

viscous code. However, the bandwidth could still be

the maximum, N.

The commercially available sparse iterative solver,

SITRSOL [17], which resides on the Cray YMP as
a callable subroutine was also evaluated for solving

the above matrix equation. SITtLSOL takes advan-

tage of the matrix sparseness by only storing the

nonzero entries. The package makes available to the

user several iterative methods as well as precondi-
tioners for solving non-symmetric positive indefinite

sparse linear systems. In the present work the bi-

conjugate gradient method, the generalized minimal
residual method, and the generalized conjugate resid-

ual method were considered. An incomplete LU

preconditioner was also used. These three iterative

methods are of the preconditioned conjugate gradi-

ent type.
The iterative solver SITRSOL was used on one of

the test cases to be shown in the results section and

8



itseffectivenesswascomparedwith that of the point

block Gauss-Seidel method. The conclusions shown

in this work are provisionM. More experience needs to
be obtained to make a true evaluation of the various

solvers and preconditioners.
The solution of Eq. (18) using a point block Gauss-

Seidel method suffers from recurrence. The penMty

is seen in vectorization. This recurrence can be elim-

inated with a minimum effect on the solution con-

vergence rate by using a coloring scheme. The idea
comes from a problem which arose in graph theory. A
theorem states that a map can be colored with only

four colors such that no two regions of the same color

share a border. The conjecture was proven through

exhaustive computation by Appel and Haken [16] in

1976. This theorem was implemented by first color-

ing the unstructured grid according to the theorem
and storing all cell numbers of given color in an in-

teger array. The scheme was most efficient when the
number of cells in each color integer array was about

equal.
This gave a color map that was then used as input

to the flow code. The Gauss-Seidel algorithm was

then written to contain four loops corresponding to

the four colors of the colored grid. Each single col-

ored loop contained no level 1 cell recurrence, so it
was vectorized. On a typical problem in the present

study, the solution time for the algebraic system(the

Gauss-Seidel subroutine) was reduced by a factor of

7.6 times by using this four color partitioning. Re-

currence is still present but only through the level

2 cells, illustrated in Fig. 3, required in the viscous
terms. The result is that the quantities in the level 2

cells are lagged from the previous iteration time step.

However, this does not seem to effect the convergence

rate.

9 Results

The results presented in this section will be used to
demonstrate two conclusions. The initial results will

show the validity of the code. And later results will

indicate the versatility of the unstructured grid over

the structured grid formulation. Comparisons will be

made with data available from other investigators.

9.1 Bump on Wall

Inviscid flow over a bump in a channel was computed
at two values of Mach number. A Mach number of

0.5 was used for the first test case. Figure 5 shows

Mach number contours. The flow was subsonic so

the inviscid flow was symmetric about the middle of

the bump. This could be seen more clearly when the

Figure 5: Constant Mach number contours for flow

over a symmetrical bump in a channel, Mi,_ = 0.5

0.70 l=

0,60 _ • ..... ........ '"f'" """" _" "" "_v'C.......... t,,sot,,-,...o,
o.soL ...... • .-.._ " ....._ ...--

@.O 0,5 1.0 1.5 2.0 2.5 ,3.0

Figure 6: Upper and lower wall Mach number distri-
bution

upper and lower wall Mach number distributions were

plotted. The results of this subsonic case compared
well with those reported by Ni, [18].

A second test case was computed at a Mach num-

ber of 0.675 at the inlet. Here the flow was transonic

over the bump. The grid used for this test case can be

seen in Fig. 7. A supersonic bubble was formed on

the bump, Fig. 8. The location of the shock was
shown clearly in the plot of upper and lower wall

Mach number distributions, Fig. 9. The location of

the shock compared well with the results of Ni, [18]
as well as that of Chima et al, [19]. The sonic line

that impinged on the aft side of the bump was at a

distance of 72 percent of the chord length from the

head of the bump in the above cases. The present
case locates the sonic line at 73 percent of the chord

length.

These inviscid test cases required the addition of

artificial dissipation. For the subsonic case, a fourth

difference was added to prevent the odd-even de-

coupling of the solution seen in central difference
schemes. The transonic case also required the addi-

tional second difference to prevent oscillations from

occurring about the discontinuity. In both cases the

dissipation model was similar to that of Jameson et

al. [3]. Later 3ameson and Mavriplis [6] implemented

this type of dissipation model for an explicit unstruc-

tured grid flow solver.
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Figure 7: Computational grid for the symmetrical

bump in a channel test case, Mi. = 0.675

Figure 8: Constant Mach number contours for flow

over a symmetrical bump in a channel, Mi, = 0.675

121010804 •......... ,"'" :::::_:':=:;";,
o o 05 _0 _5 20 25 30

Figure 9: Upper and lower wall Mach number distri-
bution

9.2 Developing Channel Flow

Developing flow in a channel was used to validate the

code for viscous flows. It also served the purpose of

testing the preconditioning used for computing low

Mach number flows. Comparisons were made be-
tween the Gauss-Seidel method and the solver SITI_-

SOL for solving the sparse matrix equation.

The code was validated on four developing channel
flow test cases. A low inlet Mach number flow of 0.05

was used to compute flows at Reynolds numbers of

1, 20, 150, and 1500 based on the inlet uniform ve-

locity, density, and full channel height. Because the
inlet Mach number was held constant, the channel

height was varied to obtain the appropriate Reynolds

number. Unstructured grids of 1114,1969,4800, and

4800 cells were used for the Reynolds number flows

of 1, 20, 150, and 1500 respectively. Uniform flow
enters the channel with a nondimensional uniform

velocity of one and accelerates to a nondimensional
centerline velocity of 1.5. In order to compare with

published results for incompressible flows, it was nec-
essary to make a correction to the centerline velocity

at the low Reynolds numbers due to the larger den-

sity variation from the inlet to the exit of the chan-

nel. Figure 10 shows the centerline velocity of the
channel flow at various Reynolds numbers. These

results were compared with other computations by

Tenpas and Pletcher [20], Morihara and Cheng [21],

and Chilukuri and Pletcher [22]. At a Reynolds num-

ber of 20 the centerline velocity of the current study

slightly under predicted the centerline velocities ob-

tained by the other investigators near the exit of the

channel. At a Reynolds number of 1500, the results
of the present study show a more rapid acceleration

of the flow than indicated by the solution of the par-

tially parabolized Navier-Stokes equations.

Typical convergence histories for the code axe

shown in Fig. 11. The convergence criteria was based

on the residual of the continuity equation in delta

form which should approach machine zero as the solu-

tion goes to a steady state. The solution of the matrix

equation was done by the block Gauss-Seidel method.

In general, the solution converged at nearly the same

rate over a wide range of Mach numbers holding the

Reynolds number equal to 20 for the four flow test

cases. This illustrates the benefits of the precondi-

tioning. Without preconditioning, it was necessary

to run the code at a much smaller time step thus de-

creasing the rate of convergence. At Mach numbers

lower than 0.1 the code without preconditioning did

not converge.

The sparse matrix solver SITRSOL was used for

comparison with the Gaus_Seidel method. The con-
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Figure 10: Centerline velocity profiles for develop-

ing flow in a channel at Mi,_ = 0.05 with Reh =

1, 20, 150, 1500
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Figure 11: Convergence history for developing chan-
nel flow over a range of Mach numbers at Reh = 20

using the block Gauss-Seidel solver
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Figure 12: Convergence history of developing flow in
a channel, /_eh = 20 computed with sparse matrix

solver

vergence history for three different conjugate gradi-
ent like methods with the ILU used as a precondi-

tioner is shown in Fig. 12. The Gauss-Seidel method

without the coloring algorithm took 13.5 minutes on

the Cray YMP. The same computation with a color

map supplied for vectorization of the Gauss-Seidel

algorithm gave a speedup factor of 7.6 over the stan-
dard Gauss-S.eidel matrix solver. The overall com-

puter time was reduced to 11.4 minutes, or a speed

up of 15.5 percent. This suggests that more attention

should be given to the vectorization of other parts
of the flow code. The coloring scheme did not have
much effect on the convergence history of this viscous

calculation. The same grid was used to make com-

parisons with SITRSOL. The bi-conjugate gradient
method took 9.3 minutes of computer time to reach

about the same level of convergence as the Gauss-

Seidel method. The generalized conjugate gradient

residual method required 10.23 minutes of computer

time. About the same level of convergence was ob-

tained by the generalized minimum residual method

in 5.5 minutes.

9.3 Sudden Expansion

The previous test cases could have easily been com-

puted using a structured grid approach. The sud-

den expansion test case demonstrates the capabil-

ity of the unstructured grid generation and its abil-
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ity to obtaina grid in a domainthat wouldother-
wise need a patched or masked grid to work for a
structured flow code. The results from this com-

1.4

putation were compared with the experimental re-

salts obtained by Durst et al. [23]. They noted that

though at lower Reynolds numbers the flow was sym- 12

metric about the centerline of the expansion, there

were three-dimensional effects near the separated re- 10

gions. A plane symmetric sudden expansion with a

downstream channel height to step height ratio of 3:1 0s

was computed. The Reynolds number for this flow

was 56 based on the upstream channel height and ._ 0s
the centerline upstream velocity. A fully developed

parabolic profile was prescribed at the inlet which was 0.4
located one step height upstream of the expansion.

The Reynolds number was computed at a streamwise
0.2

location 0.25 step heights upstream of the expansion.

It was interesting to note that the profile at this lo-
cation was already anticipating the expansion corner, oo

The flow near the wall begins to accelerate; and to

conserve mass, the centerline velocity decreases. The -0_z
flow separates at the step, reattaches downstream,
and returns to a fully developed profile about ten step
heights from the expansion. The streamwise velocity
component at six specific channel locations are shown
in Fig. 13. Comparisons were made with the laser
anemometer experimental data presented by Durst et
al. [23]. The centerline velocity distribution was com-
pared with the laser anemometer data and with the

viscous-inviscid interaction computational method of

Kwon et al. [24] and is shown in Fig. 14. The pre-

dicted centerline velocity appears larger than the ex-

perimental values downstream, but the correct value
of one-third the upstream fully developed centerline

velocity was obtained in the present calculation.

° °

o

oo°

8

_o
o

9.4 Periodic Tandem Circular Cylin- 08

ders in Cross Flow

The flow was computed over a cascade of tandem _ 57

circular cylinders. This computation should be of
0.6

practical interest in that geometries of this sort are

encountered when modeling flow through heat ex-

changers. These tube heat exchangers can be found 0.5
in automobile radiators, room heaters and gas and

air heaters. With the unstructured grid formulation,

it was easier to generate a computational grid about

in-line as well as staggered cascades of tubes. Some of

the geometric quantities that affect the flow charac-

teristics of the heat exchanger are the size and shape
of the tubes as well as their vertical and horizontal

spacing. This type of parametric study is ideal for

the unstructured grid formulation.

The model problems presented here were compared

-- Present predictions

Data Durst et aL

x/h
• -0.25

o t .50

a 2.50

_k o 3.50

o 5.00

-io -05 o'o o'_ ,:o
(Y--YCL)/YCL

Figure 13: Velocity profiles for a laminar flow in

a channel with a 3:1 symmetric sudden expansion,

Reh = 56

1.0 Present predictions

=, Kwon et al.

0.9

0.4

B •

i I i I I I

0.0 0.2 0.4 0.6 0.8 1.0

(x-x,)/L_

Figure 14: Centerline velocity distribution for a lam-
inar flow in a channel with a 3:1 symmetric sudden

expansion, Reh = 56
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15: Grid about periodic tandem circular cylin- _ -Figure
ders

Streamlines,Gordon
Present Results

Figure 16: Periodic tandem circular cylinders in cross

flow, Re, = 1

with the incompressible numerical results of Gordon

[25]. Uniform flow conditions were prescribed per-
pendicular to the cascade upstream of the first bank
of tubes. Periodic boundary conditions were imposed

at the upper and lower geometric boundaries to simu-
late an infinite number of parallel rows. The tubes in

this case were in-line. An upstream Mach of 0.05 was

used for both computed test cases. Both cases were

computed on the same geometry. The geometry used
in both test cases and the grid used for the second

test case is shown in Fig. 15.

The first test case was computed at a Reynolds

number of 1.0 based on the upstream conditions and

cylinder radius. The velocity vectors are shown in

Fig. 16 and compare well with the streamlines com-
puted by Gordon [25]. At this Reynolds number the

flow was nearly symmetric about both cylinders indi-

cating that there was minimal influence of one bank

of cylinders on the other.
The second test case was computed at a Reynolds

number of 20.0 based on the same conditions as the

test case above. Here the flow separates behind both

cylinder banks. An enlargement of the velocity vec-
tors near the cylinders is shown in Fig. 17 and the

length of the separated regions behind both of the

cylinders compares well with those computed by Gor-

don [25]. As noted by Gordon [25], the length of the
separation behind the second bank of tubes is slightly
smaller than that behind the first bank. The first set

of cylinders accelerates the flow in the freestream so

Streamlines, Gordon

Figure 17: Periodic tandem circular cylinders in cross

flow, Re, = 20

the slower wake flow impacts the second set of cylin-

ders. The flow was symmetric about an imaginary

horizontal line that passed through the centers of the

cylinders. There does not seem to be any difference
in the angular location of the actual separation point

on either cylinder.

9.5 Four Port Valve

The final results are presented to show the versatil-

ity of applying boundary conditions when using an

unstructured grid flow solver. The geometry repre-
sents a two-dimensional valve with four ports where

inlet or outlet flow boundary conditions can be speci-

fied. A reference was made to such a flow geometry in

an article by Ackert [26]. The actual flow conditions

were not given. Here the flow was computed at two

Reynolds numbers. Fluid enters through a channel on

the left, enters the circular cavity, and exits through
a channel at the bottom. For both test cases fully de-

veloped conditions were prescribed at the inlet. The

flow redevelops along the open channel. Both test
cases were computed with an inlet Mach number of

0.05. An interesting aspect of the geometry was that

the closed valve ports acted as driven cavities. The

unstructured grid formulation allows the application

of exit boundary conditions at any or all of the three

remaining ports. This type of valve geometry can be

found in an application like fluid networks.
Fluid flow was first simulated in the valve geome-

try at a Reynolds number of 10 based on inlet con-
ditions and channel height. The velocity vectors of

this steady state flow are shown in Fig. 18. Here the
fluid near the wall of the inlet channel was acceler-

ated as the corner of the cavity was anticipated. A

clockwise rotation of the fluid was followed through

the circular volume. The fluid in the closed cavity

ports was driven in a counterclockwise rotation. The
band of fluid then enters the open lower exit channel

and again becomes fully developed.
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Figure18:Fourportvalve,Reh = 10

Figure 19: Four port valve, Reh = 50

Next the same valve geometry was used to simulate

the fluid flow at a Reynolds number of 50 based on

inlet conditions and channel height. The velocity vec-

tors of tlns computation are shown in Fig. 19. Again

a fully developed velocity profile was specified at the
inlet to the channel. The velocity of the fluid near the

wall accelerates as it approaches the entrance to the

circular chamber. Contrary to the previous case, the

banded fluid actually drove a large volume of fluid in
a counterclockwise direction. This had the effect of

driving the dosed valve ports in an opposite rotation

direction from that of the lower Reynolds number test

case. Also, the band of fluid did not diffuse as much
across the circular volume. In the open exit channel

the fluid redevelops into a fully developed parabolic

profile.

10 Conclusions

A two-dimensional unstructured grid implicit flow

solver was described. Although only internal flow

problems were considered in this study, the method

is believed to be applicable to external flows as well.
The compressible flow equations were discretized in

14



finitevolumeform.
Severalconclusionscanbedrawnfromthepresent

study.

1. A triangular unstructured grid can be generated

about very complex geometries where the use of

a single structured grid cannot be considered in

most cases. This gives the advantage that a sin-

gle computer code can be used in a wide vari-

ety of flow geometry applications. However, this

advantage is somewhat dampened by the com-

plexity of coding required for solving a system of
differential equations on this unstructured grid.

Details such as boundary conditions are more

difficult to implement on an unstructured grid.

2. It was found that the diagonal block Gauss-

Seidel solver was more robust than the point di-

agonal Gauss-Seidel version of solver. The diag-

onal point solver seemed sensitive to initial con-

ditions and diagonal dominance. [1]
3. A coloring scheme was used to take advantage

of the vectorization of the implicit Gauss-Seidel

solver. A minimum of extra storage was neces-

sary for a significant reduction in computer time.

The time spent in the solver was decreased by a [2]
factor of 7.6. It was found that the recurrence in

the viscous fluxes had little affect on the conver-

gence of the solution to a steady state.
[z]

4. The use of the sparse matrix iterative solver al-

lowed a much larger time step to be used than
that of the Gauss-Seidel solver. However, every

time step using the sparse matrix solver was sig-

nificantly more expensive. Even so, the sparse [4]
solver ran at 2 to 2.5 times faster than the block

Ganss-Seidel solver. Several different conjugate

gradient like solvers were tested with the matrix

preconditioners available with SITRSOL. Some

of the preconditioners did not allow a solution

to the equations. The incomplete LU precondi-
tioner was found to be the best. The solvers all [6]

exhibited the same basic convergence rate. The

difference in the solvers was in the time that was

required to obtMn the same convergence level.

The generalized minimum residual method was
found to be the fastest for the particular test case [7]

that was being computed.

5. A temporal preconditioning was added to the

flow equations to allow solutions at very low
Mach numbers. The preconditioner was imple- [8]

mented such that both steady state and time ac-

curate flows could be computed. Steady state
solutions were considered in this study. Math

number flows as low as 0.0005 were computed

without degradation to the convergence rate of

the solution procedure. Without the precondi-

tioning, convergence was either very slow due to
the necessity of running at a much smaller time

step, or the equations could not be converged to
a solution. Preconditioning was relatively easy

to add to the numerical code.

Acknowledgment

This research was partially supported by the Institute

for Computational Mechanics in Propulsion at NASA
Lewis Research Center through the NASA Coopera-

tive Agreement, NCC3-233.

References

Steger, J., and Warming, lZ. F., "Flux Vector

Splitting of the Inviscid Gasdynumics Equations

with Application to Finite-Difference Methods,"
NASA TM-78605, 1978.

MacCormack, R. W., "A Numerical Method for

Solving the Equations of Compressible Viscous

Flow," AIAA 81-0110, 1981.

Jameson, A., Schmidt, W., and Turkel, E., "Nu-
merical Solution of the Euler Equations by Fi-

nite Volume Methods Using Runge-Kutta Time

Stepping Schemes," AIAA 81-1259, 1981.

MacCormack, IZ. W., "Current Status of Numer-
ical Solutions of the Navier-Stokes Equations,"

AIAA 85-0032, 1985.

[5] Jameson, A., "Successes and Challenges in Com-
putational Aerodynamics," AIAA 87-1184, 1987.

Jameson, A., Mavriplis, D., "Finite Volume So-
lution of the Two Dimensional Euler Equations

on a Regular Triangular Mesh," AIAA 85-0435,

1985.

Mavriplis, D., Jameson, A., MartineUi, L.,

"Multigrid Solution of the Navier-Stokes Equa-

tions on Triangular Meshes," AIAA 89-0120,

1989.

Venkatakrishnan, V., Barth, T. J., "Application
of Direct Solvers to Unstructured Meshes for the

Euler and Navier-Stokes Equations Using Up-

wind Schemes," AIAA 89-0364, 1989.

15



[9]Barth,T. J., Jespersen, D. C., "The Design and

Application of Upwind Schemes on Unstructured

Meshes," AIAA 89-0366, 1989.

[10] Holmes, D.G., and Connel, S. D., "Solution
of the 2D Navier-Stokes Equations on Unstruc-

tured Adaptive Grids," AIAA 89-1932, 1989.

[11] Batina, J. T., "Development of Unstructured
Grid Methods for Steady and Unsteady Aerody-

namic Analysis," Presented at the 17th Congress
of the International Council of the Aeronautical

Sciences, Stockholm, Sweden, 1990.

[12] Holmes, D.G., and Snyder, D. D., '_rhe Gener-

ation of Unstructured Triangular Meshes Using

Delaunay Triangulation," Numerical Grid Gen-

eration in Computational Fluid Mechanics "88,

Pineridge Press, Miami, 1988. pp. 643-652.

[13] Choi, D., Merkel, C. L., "Application of Time-
Iterative Schemes to Incompressible Flows,"

AIAA 84-1638, 1984.

[14] Turkel, E, "Preconditioned Methods for Solving

the Incompressible and Low Speed Compressible

Equations," Journal of Computational Physics,

72, pp. 277-298, 1987.

[15] Withington, J. P., Shueu, J. S., Yang, V., "A
Time Accurate, Implicit Method for Chemically

Reacting Flows at All Much Numbers," AIAA

91-0581, 1991.

[16] Appel, K. and Haken, W., "Every planer map is

4-colorable," Bull. Am. Math. Soc. 82, pp. 711-

712, 1976.

[17] Cray Research, Inc., "Volume 3: UNICOS Math
and Scientific Library Reference Manual," SR-

2081 6.0, pp. 227-243, 1991.

[18] Ni, R., "A Multi-Grid Scheme for Solving the
Euler Equations," AIAA 81-1025, 1981.

[19] Chiton, R. V., Turkel, E., Schaffer, S., "Com-

parison of Three Explicit Multigrid Methods for
the Euler and Navier-Stokes Equations," AIAA

87-0602, 1987.

[20] Tenpas, P. W. and Pletcher, It. H., "Solution of

the Navier-Stokes equations for subsonic flows

using a coupled space-marching method," AIAA

87-1173-cp, 1987.

[21] Morihara, H. and Cheng, It. T., "Numerical so-
lution of the viscous flow in the entrance re-

gion of parallel plates," Journal of Computa-
tional Physics, 11, No. 4, pp. 550-572, 1973.

[22]

[23]

[24]

[25]

[26]

Chilukuri, R. and Pletcher, R. H., "Numeri-

cal solution to the partially parabolized Navier-

Stokes equations for developing flow in a chan-

nel," Numerical Heat Transfer, 3, No. 2, pp. 169-

187, 1980.

Durst, F., Melling, A., Whitelaw, J. H., "Low

Reynolds number flow over a plane symmetric

sudden expansion," Journal of Fluid Mechanics,

64, pp. 441-428, 1974.

Kwon, O. K., Pletcher, R. H., and Lewis, J.

P., "Prediction of sudden expansion flows using

the boundary-layer equations," Trans. ASME, J.

Fluids Engineering, 106, pp. 285-291, 1984.

Gordon, D., "Numerical Calculations on Viscous

Flow Fields through Cylinder Arrays," Comput-

ers and Fluids, 6, pp. 1-13, 1978.

Ackeret, J., "Aspects of Internal Flow," Pro-

ceedings of the Symposium on the Fluid Mechan-
ics of Internal Flows, General Motors Research

Laboratories, Warren, MI, 1965.

16





Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection o! information. Send comments regarding this burden estimate or any other aspect o_ this
collection of information, including suggestions for reducing this burden, to Washington Headquarters ServCes. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1, AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1994 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Implicit Numerical Scheme for the Simulation of Internal Viscous

Flows on Unstructured Grids

6. AUTHOR(S)

Phillip C.E. Jorgenson and Richard H. Pletcher

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505-62-52

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8279

10. SPONSORING/MON_ORING
AGENCY REPORT NUMBER

NASA TM-106437

AIAA-94--0306

11. SUPPLEMENTARY NOTES
Prepared for the 32nd Aerospace SciencesMeeting & Exhibit sponsoredby the American Instituteof Aeronautics and Astronautics, Reno, Nevada,
Janualy 10-13, 1994. Philip C.E. Jorgenson, NASA Lewis Research Center and Richard H. Pletcher, Institute for Computational Mechanics in

Propulsion, NASA Lewis Research Center, and Iowa State University, Department of Mechanical Enganeering, Ames, Iowa 50010 (work funded

under NASA Cooperative Agreement NCC3-233). ICOMP Program Director, Louis A. Povinelli, (216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Navier-Stokes equations are solved numerically for two-dimensional steady viscous laminar flows. The grids are

generated based on the method of Delaunay triangulation. A finite-volume approach is used to discretize the conserva-

tion law form of the compressible flow equations written in terms of primitive variables. A preconditioning matrix is

added to the equations so that low Mach number flows can be solved economically. The equations are time marched

using either an implicit Gauss-Seidel iterative procedure or a solver based on a conjugate gradient like method. A four

color scheme is employed to vectorize the block Gauss-Seidel relaxation procedure. This increases the memory

requirements minimally and decreases the computer time spent solving the resulting system of equations substantially.

A factor of 7.6 speedup in the matrix solver is typical for the viscous equations. Numerical results are obtained for

inviscid flow over a bump in a channel at subsonic and transonic conditions for validation with structured solvers.

Viscous results are computed for developing flow in a channel, a symmetric sudden expansion, periodic tandem

cylinders in a cross-flow, and a four-port valve. Comparisons are made with available results obtained by other

investigators.

14. SUBJECT TERMS

Navier-Stokes equations; Central difference; Unstructured grid; Implicit; Preconditioning

17. SECURITY CLASSIRCATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

20
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
PrescribedbyANSI Stcl.Z39-18
298-102


